Direct Integration of Boundary Value Problems Using the Block Method via the Shooting Technique Combined with Steffensen’s Strategy

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Solving Boundary Value Problems With Neumann Conditions Using Direct Method

In this paper, the direct method is utilized for solving second order two-point boundary value problem of Neumann type. The method will obtain the solution of the second order boundary value problem directly without reducing it to to first order equations. The method will be implemented using variable step size via shooting technique adapted with the Newton method. Numerical results are given t...

متن کامل

Shooting-projection method for two-point boundary value problems

This paper presents a novel shooting method for solving two-point boundary value problems for second order ordinary differential equations. The method works as follows: first, a guess for the initial condition is made and an integration of the differential equation is performed to obtain an initial value problem solution; then, the end value of the solution is used in a simple iteration formula...

متن کامل

Shooting Method for Nonlinear Singularly Perturbed Boundary-value Problems

Asymptotic formulas, as ε → 0, are derived for the solutions of the nonlinear differential equation εu+Q(u) = 0 with boundary conditions u(−1) = u(1) = 0 or u′(−1) = u(1) = 0. The nonlinear term Q(u) behaves like a cubic; it vanishes at s−, 0, s+ and nowhere else in [s−, s+], where s− < 0 < s+. Furthermore, Q (s±) < 0, Q (0) > 0 and the integral of Q on the interval [s−, s+] is zero. Solutions ...

متن کامل

The convergence of shooting methods for singular boundary value problems

We investigate the convergence properties of single and multiple shooting when applied to singular boundary value problems. Particular attention is paid to the well-posedness of the process. It is shown that boundary value problems can be solved efficiently when a high order integrator for the associated singular initial value problems is available. Moreover, convergence results for a perturbed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2019

ISSN: 2227-7390

DOI: 10.3390/math7111075